如意信息网 - 商盟推荐
当前位置:商盟推荐首页 > 知识分享 > 自动驾驶怎么模拟数据?是使用AI吗
自动驾驶怎么模拟数据?是使用AI吗
  • 交通的复杂性在于环境构成的复杂性,以及交通参与者和可预期交通行为的不确定性。对交通场景进行多层次的细分与归类,能够成功地抽象出环境相对确定,以及交通参与者和预期行为均可以固化的模型。我们将目前有待数字化建设的交通场景按照城市道路、城市停车、桥隧、公路共四个大类(初步)细分出十三类场景及45个模型(非完备集)。针对每个场景模型,以全时、全域、全要素感知为建设目标,以必要、有效、集约为建设原则,分析对应场景模型下的交通问题,构建交通评价指标体系。

  • 车路协同系统中的几个构成要素包括智能车辆、高精地图、路侧感知,同时辅以V2X通信,边缘计算及云计算决策共同协作完成业务落地。我将其抽象为“车-路-况-信-策”五字诀。车:智能车辆本身具有动力控制系统以及环境感知系统,车辆行驶运行中自身的位置、速度、动力参数等称之为“车态”,而车载传感及AI完成车辆所处环境的组织构建,如前后车位置、障碍物、交通标识、信号灯状态灯称为“车辆所处情景”,简称“车景”。

  • 路:简单而言,就是高精地图,与我们日常交流中的路相对应,是一段时间内固化的交通通行基础,而数字化的路是车路协调系统呈现与决策的基础。况:单一时刻、场景的路侧感知系统获取到的交通参与者信息及整体交通状况描述,是实际交通过程中瞬时情况的数字映射。同一时刻不同空域场景境况的整体综合描述,构成全域交通资源的利用程度。同一场景在延续时域的境况序列中可以动态呈现周期内的交通效率。

主营业务:透过率检测仪,光纤光谱仪,反射率测试仪,光谱分析仪,积分球

更多内容
更多>

精选分享

本页面所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责如意信息网行业资讯对此不承担直接责任及连带责任。

本网部分内容转载自其他媒体,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性。不承担此类 作品侵权行为的直接责任及连带责任。